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Ridged Waveguides for Ultra-Broad-Band
Light Modulators
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Abstract —The electromagnetic field of the dominant mode propagating
in the inhomogeneously dielectrically loaded double ridged waveguide is
given in terms of a modal series expansion. The numerical evaluation of the
propagation constant reveals a remarkably linear dispersion diagram in
close agreement with measurements performed in the 8-40-GHz range.
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Based on this analysis, the bandwidth of a ridged wavegnide CO,-laser
modulator is calculated to exceed 40 GHz, when a 25-mm long CdTe
crystal is used as electrooptic material.

I. INTRODUCTION

LECTROOPTICALLY mixing a fixed-frequency CO,
laser with a frequency-tunable microwave signal yields
continuously tunable laser sidebands in the infrared. In
this way, the tunability of the microwave signal is trans-
ferred to the IR wavelength region from about 9-11 pm.
Moreover, the accurate sideband frequency can be de-
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Fig. 1. Cross section of inhomogeneously dielectrically loaded double
ridged waveguide. When employed as a light modulator, the laser beam
is focused in z-direction through the electrooptic crystal (region I),
whereas region II of the cross section remains empty.

termined as sum or difference of tabulated laser line
frequency [1] and of measured microwave frequency.
Therefore, laser sidebands have become a favorable source
of tunable coherent infrared radiation for high-resolution
direct-frequency-reading spectroscopy [2]-[4]. For linear
absorption spectroscopy, wide-band tuning of the sideband
is desired at a power level on the order of 100 uW. Whereas
this power level is readily obtained by laser and microwave
drive power levels of a few watts within CdTe- or GaAs-
electrooptic crystals, tunability is restricted to some 10
GHz by microwave dispersion induced velocity mismatch
of driving microwave and of modulated laser beam within
conventional waveguiding structures [5].

Extremely broad-band light modulators operating at mi-
crowave frequencies call for a waveguide structure contain-
ing the electrooptic crystal at a location of maximum
electric field and additionally for a velocity match over a
broad frequency interval. With both respects, the double
ridged waveguide shown in Fig. 1 seems promising. The
electrooptic crystal is located between the ridges where, for
dominant-mode operation, a desirable concentration of the
microwave field is provided. On the other hand, one can
expect to achieve velocity match for the laser beam and the
microwave signal by judicious choice of waveguide dimen-
sions. By the intrinsic parallel-plate line behavior of the
double ridged waveguide, this velocity match is anticipated
to hold for a wide frequency range.

In the following section we describe the electromagnetic
field of the dominant mode in terms of a modal series
expansion. The numerical evaluation of the unknown prop-
agation constant is outlined in Section III. Section IV
contains the comparison of measurements of the propaga-
tion constant with numerical results to check on the valid-
ity of our method. Design considerations and the evalua-
tion of modulator efficiency and of bandwidth are pre-
sented in Section V.

II. FieLp COMPONENTS

The electromagnetic field of the dominant mode will be
described as a linear combination of the undisturbed field
pattern of the dominant mode in a slab loaded rectangular

221

waveguide [6], [7], and of higher order modes. The notation
used will be the same as already given in [8], [16]. However,
the hybrid character of the ridge guide modes will be
accounted for by including both a longitudinal electric and
a longitudinal magnetic field component.

For region I of the cross section (— a’< x <0)—where
the modulator crystal will be placed—the longitudinal field
components of the dominant mode can be written as

E, =E exp(— jk,z) 2 Q,¢ch(T,,¢,) Sin(kynly)

n=1

H,= El(kz/wp'l)exp (— jkzz)

o0

) |:Sin(kx1£1)+ 2 RnSh(Fnlgl)cos (kynly)] . (1)
n=1

The corresponding field components of region II (0<x<

(a—a’)/2) are expressed by

o0
EzZ = EZCXP(— jkzz) 2 SnSh(I‘n2§2) Sin(kyn2y)

n=1

HzZ = Ez(kz/“-’.“z)eXP(_ jkzz)
cos(ky62)+ 2 ﬂ,ch(l‘nzgz)cos(kynzy)].

n=1
@)
The remaining field components can be derived from (1)
and (2) by insertion into Maxwell’s equations.

The amplitudes of the undisturbed part of the electric
field are denoted by E, (i=1,2), whereas the relative
amplitudes of the higher order modes are given by Q,,, R,,
S,, and T,, respectively. The wavenumbers in x-direction
for the undisturbed and for the higher order part of the
fields are denoted by &, and I',;, respectively, and k, is the
propagation constant of the whole mode pattern in z-direc-
tion. The wavenumbers in y-direction are given by

kyn=2nm/b’
k., =2nm/b (3)
and the quantities £, denote abbreviations for
§i=a'/2+x
¢§=(a—a")/2—x. (4)

Inserting (1) and (2) into the wave equation yields the
separation conditions

k)zci + k:zz = wzeuut

—Frfl+k§ni+k22=w2€lul. (5)

The remaining equations necessary for the determination
of the unknown amplitudes of the higher order modes are
obtained by matching the tangential electromagnetic field
components at x =0. As the sum of the higher order modes
in (1) and (2) can be regarded as a Fourier series expansion
in y-direction, their amplitudes can be calculated by the
well-known deconvolution method already described in [9].
Evaluation of the zero-order Fourier coefficient of E,
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Fig. 2 Amplitudes of higher order modes in the modal series expansion
of the dommant mode pattern. In particular, the amplitudes of the
fringing electric (Q;, S,;) and magnetic (R}, 7,;) field components at the
dielectric-dielectric interface are shown for (a) region I, and (b) region
II, of the cross section.
yields

b’k ,cos(k a’/2)
: bk, sin(ky(a—a’)/2)
The same procedure carried out for H, results in the
dispersion equation
(Dk 1y / bk oy ) tan (k' /2) —cot (kyy(a—a’) /2)
~[1/sin(k,o(a —a)/2)]

: § T,ch(T,,(a—a’) /2)sinc(nmb’ /b)=0.

n=1
()
Extending the Fourier deconvolution to the higher order
terms establishes a set of 4n linear equations from which
the relative amplitudes Q,, R,, S,, and T, can be calcu-
lated. This set of equations is derived in the Appendix.

E,=

(6)

[11. NUMERICAL EVALUATION

For any given frequency w above cutoff the propagation
constant k, will be found within the interval 0 <k, <
w /€ py. Dividing this interval by a set of 25 equally spaced
values of k —which serve as first-order estimates—the

remaining wavenumbers are calculated from (5). As a next
step, we evaluate the higher order mode amplitudes Q,,
R,, S,, and T,. Arranging the corresponding equations of
the Appendix in the order (A.3), (A.2), (A.4), and (A.6)
vields a system of 4n linear equations which are solved
numerically by the Gaussian algorithm employing a partial
search for the pivot element [10]. Now the 7,’s are inserted
into the dispersion equation (7). Whenever a zero of this
equation is detected between two estimates of k,, the
ultimate value of k, is approached by the method of
bisection.

As the number N of higher order modes employed in the
calculation influences both numerical accuracy and com-
puter time, we have calculated the normalized higher order
mode amplitudes as defined by (A.7) for several cross-sec-
tional dimensions at frequencies ranging from 10 GHz to
50 GHz. An illustrative example is presented in Fig. 2,
where Q;, R, S,, and 7, are shown for n=1,2,---,12.
The cross-sectional dimensions of the ridged guide were
chosen ¢ =6 mm, =5 mm, a’=5'=1.1 mm, the relative
permittivities €, =10.0 (CdTe) and ¢,,=1.0, and the
frequency f =30 GHz. It should be noted that the normal-
ized amplitudes are essentially the same over the frequency
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Fig. 3. Convergence of the propagation constant depending on the
number N of higher order modes employed in the numerical calcula-
tion. Deviation is normalized to k, numerically obtained for N =12,

interval indicated above. The even more rapid convergence
of k, with increasing N is shown in Fig. 3. For identical
waveguide parameters, the propagation constant k, does
not change significantly for N=12. Even for N=2 an
accuracy of about 1 percent is already achieved. Again, the
frequency dependence is very weak.

I1V. MEASUREMENTS

To confirm the numerical results we investigated the
propagation behavior of the dominant mode in an inhomo-
geneously dielectrically loaded double ridge waveguide. We
chose the cross-sectional dimensions close to a conceivable
modulator structure as a =6.0 mm, » =5.0 mm, and a’= b’
=1.1 mm. The length of the waveguide was L =91.6 mm.
As a replacement for the electrooptic crystal served an
alumina slab (96 percent Al,0,, a’=5'=1.1 mm) with a
relative permittivity of €, =9.3. Region 11 of the waveguide
cross section remained empty (e,, =1.0). To easily obtain
reliable data on the wavelength, we designed the waveguide
as a resonant cavity, one end short-circuited by a massive
brass plate. Microwave energy was fed to the ridge guide
resonator by face-to-face coupling to regular rectangular
waveguides in the 8.2-12.4-GHz, 12.4-18.0-GHz, 18.0-
26.5-GHz, and 26.5-40-GHz bands. The discontinuity at
the feeding waveguide ridge guide boundary turned out to
provide reasonable coupling over the whole frequency range
investigated. At the microwave resonances of the ridge
guide the unknown propagation constant was determined
by

k,=pm/L, p=6,78,--,60 (8)
neglecting any alteration of L due to fringing fields at the
coupling plane.

Fig. 4 shows the dispersion diagram of the ridged guide.
The dots represent the measured values of k, according to
(8), whereas the full line is obtained by numerically solving
the dispersion equation (7). In the numerical solution six
higher order modes were employed and the dielectric con-
stant of the slab was chosen ¢, =8. No other fitting
parameter was used. This decrease of the relative permittiv-
ity corresponds to an unavoidable air gap between the
waveguide ridges and the alumina slab of thickness  =0.02
mm [11]. The deviations of measured and calculated values

40

w
(=]

MICROWAVE FREQUENCY (GHz) —
n
[«

-
(=}

1000 2000 3000

PROPAGATION CONSTANT (rad/m) —

Fig. 4. Dispersion diagram of dielectrically loaded ridged waveguide.
Measured values are indicated by dots.

are on the order of =0.2 percent over the whole frequency
interval investigated. To confirm the apparent reduction of
the dielectric constant we increased the waveguide width to
a =10 mm with all other parameters remaining unchanged.
Again, measurement and calculation coincide to within
better than 0.5 percent as also can be seen from Fig. 4.
Therefore, we can confidently rely on the modal descrip-
tion and on the numerical evaluation outlined above when
designing a ridge-guide modulator.

V. MoDULATOR DESIGN

The power Pgj contained in one of the two lowest order
sidebands generated from a laser carrier with power P; is
given by [12]

Pgp =P A%/16 )
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where the single-pass phase retardation A induced by the
transverse electrooptic effect can be written as [13], [14]

(10)

In (10), the symbol A, stands for the free-space wave-
length of the CO, laser, E,, denotes the electric microwave
field strength within the modulator crystal, n, is the refrac-
tive index, r,, is the electrooptic coefficient, and L is the
length of the modulator crystal. The abbreviation sinc(x)
is used for sin(x)/x, w,, stands for the angular frequency
of the modulating signal, and 1/w characterizes the mis-
match of microwave phase (v,,) and of laser (v,) group
velocities within the modulator

1/ w=1/v,—1/v,. (11)

For maximizing the modulator efficiency we have to
produce as much electric field strength as possible from a
given amount of microwave drive power. In principle, this
can be done by reducing the thickness (electrode separa-
tion) of the modulator. However, the RF impedance of
such a device will decrease accordingly, and impedance
matching to any conventional feeding line can be achieved
only by bandwidth-limiting impedance transformers. On
the other hand, the smallest cross section of commercially
available modulator crystals is on the order of 1X1 mm?.
Therefore, we will assume this as a lower limit in our
design considerations.

Choosing a long modulator crystal will boost the side-
band intensity. However, benefit can be drawn from a long
crystal only at low modulation frequencies (w,,L /v,, <)
or for perfect velocity match (1/w =0) at any modulation
frequency. As the double ridged waveguide has very little
dispersion indeed (Fig. 4), we have investigated its useful-
ness as a CO,-laser modulator. To provide exact velocity
match in the 30-40-GHz range, we chose the cross-sec-
tional dimensions as ¢ =12.5 mm, b= 6.0 mm, and »'=1.0
mm. The width a’ of the modulator crystal served as a
parameter. The electrooptic material CdTe was chosen as
modulator crystal with n=2.67, ¢,,=10.0, and njr,; =
107 °m /V [15].

As a first step in the evaluation of (9) and (10), we
calculated the propagation constant k, and the microwave
phase velocity v,, = w,, /k, within a frequency range from
10 GHz to 60 GHz. This enabled us to study the band-
width limiting effects of microwave dispersion. Next, we
computed the x- and y-dependence of the electric micro-
wave field component E,; assuming a microwave drive
power of 1 W. It turned out that this field component
exhibits an essentially uniform distribution over the modu-
lator cross section. Even at the boundary of the modulator
crystal (x = 0) still 80 percent of its maximum value at the
center of the crystal is present. This favorable behavior
Justifies to insert the maximum value of E,; in (10) for the
modulating field strength E,,. Fig. 5 shows the sideband
power generated from 1-W laser power by a traveling-wave
modulator of L =25 mm length. Decreasing the modulator

A=(2a/A)ndryE,, Lsinc(w, L/2w).
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Fig. 6. Wave impedance of the domnant mode propagating in the
double nidged waveguide.

width o’ will increase sideband power along with the
frequency where velocity match occurs, however, at the
expense of sideband power at about 20 GHz. This can
limit the usable 3-dB bandwidth. In the low-frequency
regime two effects add favorably. First, any velocity mis-
match becomes less detrimental due to the reduction of W,
compare (10), and—on the other hand—the modulating
field strength rises in connection with the increasing wave
impedance of the double ridged guide. Fig. 6 shows the
wave impedance of the dominant mode as a function of
frequency. For a quadratic modulator crystal cross section
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the efficiency graph of Fig. 5 within 10 GHz and the frequency where a
zero of sideband power occurs, for several cross-sectional geometries of
the modulator crystal. Optimum crystal width o’ for maximum 3-dB
bandwidth is indicated by the dashed line.

with dimensions on the order of 1 mm, the wave imped-
ance is about 130 © and shows little dispersion.

Turning back to Fig. 5, the bandwidth to be expected
from a well-designed ridge-guide modulator is quite im-
pressive. It extends over more than two octaves from 10
GHz to about 50 GHz for ’=1 mm. It should be pointed
out that this bandwidth means not only tunability of a
single-frequency sideband but also constitutes an instanta-
neous bandwidth for generating a broad sideband spec-
trum. For comparison, the sideband power generated by a
conventional, 25-mm long modulator exhibiting the same
velocity matching frequency is represented in Fig. 5 by a
dashed line. This state-of-the-art modulator consists of an
electrooptic crystal with dimensions of ¢’=2.26 mm and

’=1 mm completely enclosed in a rectangular waveguide
[5]. Its peak sideband power is slightly higher than that of
the ridge-modulator; its bandwidth, however, is only about
10 GHz as compared to 40 GHz of the ridge-guide modula-
tor.

For spectroscopic purposes, a measure for the tunability
of quite a modest sideband power level is even more
important than 3-dB bandwidth. To establish such a mea-
sure we have calculated the area enclosed by the sideband-
power graph within a frequency interval extending from 10
GHz to the frequency where the first zero of sideband
power occurs. Again we assumed 1-W laser power and 1-W
microwave drive power. This “sideband-bandwidth-prod-
uct” is shown in Fig. 7. Generally, it increases with de-
creasing crystal height »’. However, there exists for every
given crystal height »" an optimum value of crystal width
a’. Interesting enough, this optimum clearly differs from
the value of @’ for maximum 3-dB bandwidth indicated by
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the dashed line in Fig. 7. For comparison, the sideband-
bandwidth-product of our state-of-the-art modulator is
about 0.43 mW-GHz. ‘

VL

We have analyzed the dominant mode field of the inho-
mogeneously dielectrically loaded double ridged waveguide
in terms of a higher order mode series expansion. From the
continuity equations at the dielectric-dielectric boundary
we have evaluated the propagation constant as a function
of microwave frequency. The almost linear behavior of the
dispersion diagram and the close agreement of measure-
ments to calculation encouraged us to design an ultra-
broad-band laser modulator based on the dielectrically
loaded ridged guide. Bandwidth and sideband—bandwidth
product were calculated to exceed the corresponding prop-
erties of any existing CO,-laser modulator by far. In partic-
ular, a 3-dB bandwidth ranging from about 10 GHz to
more than 50 GHz can be expected from a ridge-guide
modulator.

CONCLUSION

APPENDIX

For the evaluation of the unknown higher order mode
amplitudes Q,, R,,, S,, and T,, a Fourier-series deconvolu-
tion of the continuity equations at the dielectric~dielectric
boundary (x =0) is employed. Evaluating the zero-order
Fourier coefficient of the electric field component E,, within
the interval —b/2<< y<<b/2 yields a relation between the
undisturbed field amplitudes

E,=nE, (A.1,a)
where the quantity 7 is defined by
n:[lkaZCOS(kxlal)]/[kxlSin(kx2a2)] (Al,b)
ay=a’/2 (A.l,¢)
ay=(a—a’)/2 (A.1,d)
and
B=b'/b. (A.1,¢)

Determination of the higher order Fourier coefficients
yields (k=1,2,---)

Sek ez + T Ty = — 2k sin (ko) sinc (k7B ) /sh (Ty5e; )
+ K28/ (Kansh (D)) (A2)
The same procedure applied to E, at x = 0 yields

S = (an/Sh(FkZaZ)) 2 Q,ch(T,a)

n=1

[sinc7#(n—kB)—sinca(n+kB)]. (A.3)

Now we turn to the tangential magnetic field compo-
nents at the region I/region II boundary where for H,
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applies
Rkkykl - (‘*’zflﬂl/kzz)rikl = leim/(ﬂzkizsh(rklal))
2 (T;tkyn2 +(w2€2‘u‘2/k22)Snrn2) Ch(rnzaz)
n=1

- [sinc 7(k—nB) —sinc w(k+np)]. (A.4)
Finally, we evaluate the zero-order Fourier coefficient of
H, resulting in the dispersion equation
[nu‘kal /(k 2B )] tan (K, ) —cot(k,,a, )
—(1/sin (k)

- 2 T,ch(T,,a,)sinc(naf)=0
n=1

and the higher order coefficients

Rk:[nﬂl/(ﬂzsh(rklal))] § T,ch(T, ;)

n=1

-[sincw(k +nB)+sincw(k-nB)]. (A.6)

(A.5)

To gain insight in the relative magnitudes of the fringing
fields, we calculate the higher order mode amplitudes at
the location of their maximum (x = 0) and normalize them
to the amplitude E, of the undisturbed field within the
modulator crystal. This procedure results in the normalized
higher order mode amplitudes shown in Fig. 2 which are
defined by

Q,=0,ch(T,a,) (A7, )

R, =R, sh(T,a,) (A.7,b)

S, = Smsh(T,a,) (A7.¢)
and

T, =Tmch(T,a,). (A7, 4d)
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